Search results

1 – 1 of 1
Article
Publication date: 21 March 2016

Sahour Sayed, Mohammed Gamil, Ahmed Fath El-Bab, Koichi Nakamura, Toshiyuki Tsuchiya, Osamu Tabata and Ahmed Abd El-Moneim

The purpose of this paper is to develop a new simple technique to synthesize graphene film on a flexible polyethylene terephthalate (PET) substrate and applied as a strain sensor.

Abstract

Purpose

The purpose of this paper is to develop a new simple technique to synthesize graphene film on a flexible polyethylene terephthalate (PET) substrate and applied as a strain sensor.

Design/methodology/approach

Graphene film was synthesized using laser treatment of graphene oxide (GO) film deposited on PET substrate. A universal laser system was used to simultaneously reduce and pattern the GO film into laser reduced graphene oxide (LRGO) film.

Findings

The laser treatment synthesizes a multilayer graphene film with overlapped flakes, which shows structure integrity, mechanical flexibility and electrical conductivity of 1,330 S/m. The developed LRGO/PET film was used to fabricate a high sensitivity strain sensor. The sensitivity and temperature dependency of its gauge factor (GF) was examined at applied strains up to 0.25 per cent and operating temperatures up to 80°C. The fabricated sensor shows stable GF of approximately 78 up to 60°C with standard error of the mean not exceeding approximately ± 0.2.

Originality/value

The proposed method offers a new simple and productive technique of fabricating large-scale graphene-based flexible devices at a low cost.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 1 of 1